Опит за представяне на научен аргумент за съществуването на Бога – продължение 2*

Валентин Велчев

Посоченото говори, че предвидените от Хокинг и Млодинов 10500 вселени са съвсем нищожно количество. Но дори да увеличат броят им до безкрайност, приведените изчисления дават да се разбере, че пак не се очертава никакъв шанс случайно да се породи свят като нашия.

При живите организми вариациите са ограничени, понеже техните компоненти (ДНК, белтъци и така нататък) са изградени от строго определен брой дискретни единици (нуклеотиди, аминокиселини и други). Но в действителност се очертават нищожно малки, практически неизпълними, вероятности случайно да се образува протоклетка, способна да реализира всички жизнени процеси. С други думи, в посочените области, статистическите закони забраняват (не допускат, правят абсолютно невероятно) самоподреждането на материята.

Фигура 3 ни позволява да направим и още едно важно заключение, а именно, че никакви еволюционни процеси не са допустими нито в мъртвата, нито в живата природа.

Според дефиницията, иерархичната система е множество от елементи, които се намират в отношения и връзки помежду си и образуват определено единство, цялостност. Всички елементи на системата са взаимозависими, тоест всеки от тях влияе на останалите и обратно – те също оказват въздействие върху него. Структурата на системата определя нейната вътрешна форма на подреждане, тоест тя е израз на съществуващия в нея ред. Пълното описание на реда в сложно организираните системи се изучава от една сравнително нова наука – таксиологията (логиката на реда), която се разработва напоследък като една от най-фундаменталните и важни логически теории. Но нейните основни положения и категории се изследват с помощта на твърде сложни екстензионални математико-логически и теоретико-информационни методи. Затова ние няма да се спираме на тях, а ще приложим един изключително опростен подход, който ще ни позволи да направим изводи относно възможността за еволюция на иерархично подредените системи.

При тях е в сила един принцип известен като “или всичко, или нищо”. В смисъл, че структурата трябва да е съставена от подходящи елементи, които да са подредени в правилния ред, за да не се наруши действието на системата. Ако променим параметрите дори само на един от тях, или изобщо го премахнем, или разменим местата на някои елементи и прочее, ще се получи смущение в работата на системата, което ще я разруши или изведе от употреба. Затова или всичко е наред и системата функционира нормално, или, в противен случай, все едно нищо не е наред и системата е ликвидирана.

Този принцип забранява постепенната “еволюция” на една структура в друга. В състояние ли е един малък механичен часовник плавно да се трансформира в будилник? Да предположим, че едно от неговите зъбни колела е станало по-голямо като за будилник. Тогава то ще бъде несъвместимо с всички останали механизми на малкия часовник и той няма да отчита правилно времето или въобще няма да работи. Нека и другите му части се изменят и стават като за будилник. Докато една част от механизмите му са за малък часовник, а друга – за голям, функцията му ще бъде значително нарушена или въобще няма да може да се осъществи. Часовникът ще изпълнява предназначението си само тогава, когато или всичките му части са малки, или всичките са големи.

А какво ще стане, ако някой от механизмите на часовника бъде заменен с елемент на компютър? Например, на мястото на пружината бъде поставен транзистор. Часовникът вече съвсем сигурно ще излезе от употреба. От друга страна и компютърът няма да реализира своята функция дори тогава, когато сме сглобили всички негови компоненти, а само един е останал на часовник.

От казаното заключаваме следното: когато един предмет постепенно се преобразува в друг такъв от същия вид (но в нещо различен – по големина, друг модел и така нататък) функцията се затруднява или дори спира. А при трансформацията на предмет от един вид в предмет от друг вид, функция изобщо не може да се осъществи. Затова или “всичко” е наред и системата функционира нормално, или, ако дори едно нещо не е наред, все едно “нищо” не е наред и функцията е нарушена.

Разбира се, отношенията между елементите на системите в природата са значително по-сложни; ние си послужихме с тези примери, само за да онагледим принципа „или всичко, или нищо”.

Като анализираме фигура 3, сме в състояние да направим и следния извод относно възможността за еволюция на системите с безкраен брой стойности на своите параметри: не е възможен нито постепенен, нито скокообразен („квантов”) преход на една работеща система в друга.

В първият случай, тоест при постепенен преход, ако един от нейните параметри промени стойността си, той вече няма да бъде съгласуван с другите ѝ параметри и системата ще излезе от строя. Но докато не бъдат изградени напълно всички необходими параметри на другата система, тя също няма да бъде годна за работа, което следва от принципа “или всичко, или нищо“.

Вторият случай, на внезапно преобразуване, отново няма как да се реализира. Вероятността всички параметри на системата изведнъж да се променят и да добият точно необходимите стойности на параметрите на която и да е друга действаща система е метафорично казано „по-малка от безкрайно малка“ (1/∞k). 

При по-предните разсъждения вече стана дума, че всяка метаморфоза в параметрите на микросвета (характеристика на частиците, интензитет на взаимодействията и прочее) прави атомите нестабилни и води до тяхното разрушаване. С други думи, атомите на химичните елементи са дискретни структури, които не могат да преминават една в друга чрез поредица от междинни форми, а изискват строго разчетено конструиране. По подобен начин бихме могли да разсъждаваме и за небесните формирования – планетни, звездни, галактични и така нататък.

Както е добре известно, при живите същества белтъците играят много важна роля – изграждат клетъчните структури, изпълняват каталитични функции, участват в реализирането на генома и други. Но една част от тях са тясно видово специфични, затова ако се появи мутация, която да доведе до образуването на различен белтък, неговото действие няма да бъде в унисон с работата на останалите белтъци. По такъв начин, генетичните мутации пречат на синхронизацията на системите в организма и затова на практика се явяват вредни за индивида, тоест не му помагат в борбата за съществуване. С други думи, принципът „всичко или нищо” не способства и за постепенната еволюция на организмите, а няма никакви сведения и за „квантова” (тоест внезапна) поява на нови видове.

От направените разсъждения можем да заключим следното: Междинните състояния са: а) неустойчиви – при атомните и небесните структури и б) нефункциониращи – при живите организми. Това означава, че концепцията за универсална дарвинова еволюция на системите в мъртвата и живата природа е съвършено неприемлива.

Като се върнем на фигура 3, нека да си припомним парадокса, свързан с онази проста сметка:

от която се разбира, че Бог може да сътвори неограничено разнообразие от подредени и устойчиви светове, като вероятността за случайното възникване на който и да било от тях е „по-малка от безкрайно малка“, което изключва случайното му възникване.

Така се отговаря и на въпроса, поставен още от Айнщайн „имал ли е Бог избор при създаването на Вселената?”, който отново задават Хокинг и Млодинов в книгата си „Великият дизайн”.

Прочетете още „Опит за представяне на научен аргумент за съществуването на Бога – продължение 2*“