Опит за представяне на научен аргумент за съществуването на Бога – продължение 2*

Валентин Велчев

Посоченото говори, че предвидените от Хокинг и Млодинов 10500 вселени са съвсем нищожно количество. Но дори да увеличат броят им до безкрайност, приведените изчисления дават да се разбере, че пак не се очертава никакъв шанс случайно да се породи свят като нашия.

При живите организми вариациите са ограничени, понеже техните компоненти (ДНК, белтъци и така нататък) са изградени от строго определен брой дискретни единици (нуклеотиди, аминокиселини и други). Но в действителност се очертават нищожно малки, практически неизпълними, вероятности случайно да се образува протоклетка, способна да реализира всички жизнени процеси. С други думи, в посочените области, статистическите закони забраняват (не допускат, правят абсолютно невероятно) самоподреждането на материята.

Фигура 3 ни позволява да направим и още едно важно заключение, а именно, че никакви еволюционни процеси не са допустими нито в мъртвата, нито в живата природа.

Според дефиницията, иерархичната система е множество от елементи, които се намират в отношения и връзки помежду си и образуват определено единство, цялостност. Всички елементи на системата са взаимозависими, тоест всеки от тях влияе на останалите и обратно – те също оказват въздействие върху него. Структурата на системата определя нейната вътрешна форма на подреждане, тоест тя е израз на съществуващия в нея ред. Пълното описание на реда в сложно организираните системи се изучава от една сравнително нова наука – таксиологията (логиката на реда), която се разработва напоследък като една от най-фундаменталните и важни логически теории. Но нейните основни положения и категории се изследват с помощта на твърде сложни екстензионални математико-логически и теоретико-информационни методи. Затова ние няма да се спираме на тях, а ще приложим един изключително опростен подход, който ще ни позволи да направим изводи относно възможността за еволюция на иерархично подредените системи.

При тях е в сила един принцип известен като “или всичко, или нищо”. В смисъл, че структурата трябва да е съставена от подходящи елементи, които да са подредени в правилния ред, за да не се наруши действието на системата. Ако променим параметрите дори само на един от тях, или изобщо го премахнем, или разменим местата на някои елементи и прочее, ще се получи смущение в работата на системата, което ще я разруши или изведе от употреба. Затова или всичко е наред и системата функционира нормално, или, в противен случай, все едно нищо не е наред и системата е ликвидирана.

Този принцип забранява постепенната “еволюция” на една структура в друга. В състояние ли е един малък механичен часовник плавно да се трансформира в будилник? Да предположим, че едно от неговите зъбни колела е станало по-голямо като за будилник. Тогава то ще бъде несъвместимо с всички останали механизми на малкия часовник и той няма да отчита правилно времето или въобще няма да работи. Нека и другите му части се изменят и стават като за будилник. Докато една част от механизмите му са за малък часовник, а друга – за голям, функцията му ще бъде значително нарушена или въобще няма да може да се осъществи. Часовникът ще изпълнява предназначението си само тогава, когато или всичките му части са малки, или всичките са големи.

А какво ще стане, ако някой от механизмите на часовника бъде заменен с елемент на компютър? Например, на мястото на пружината бъде поставен транзистор. Часовникът вече съвсем сигурно ще излезе от употреба. От друга страна и компютърът няма да реализира своята функция дори тогава, когато сме сглобили всички негови компоненти, а само един е останал на часовник.

От казаното заключаваме следното: когато един предмет постепенно се преобразува в друг такъв от същия вид (но в нещо различен – по големина, друг модел и така нататък) функцията се затруднява или дори спира. А при трансформацията на предмет от един вид в предмет от друг вид, функция изобщо не може да се осъществи. Затова или “всичко” е наред и системата функционира нормално, или, ако дори едно нещо не е наред, все едно “нищо” не е наред и функцията е нарушена.

Разбира се, отношенията между елементите на системите в природата са значително по-сложни; ние си послужихме с тези примери, само за да онагледим принципа „или всичко, или нищо”.

Като анализираме фигура 3, сме в състояние да направим и следния извод относно възможността за еволюция на системите с безкраен брой стойности на своите параметри: не е възможен нито постепенен, нито скокообразен („квантов”) преход на една работеща система в друга.

В първият случай, тоест при постепенен преход, ако един от нейните параметри промени стойността си, той вече няма да бъде съгласуван с другите ѝ параметри и системата ще излезе от строя. Но докато не бъдат изградени напълно всички необходими параметри на другата система, тя също няма да бъде годна за работа, което следва от принципа “или всичко, или нищо“.

Вторият случай, на внезапно преобразуване, отново няма как да се реализира. Вероятността всички параметри на системата изведнъж да се променят и да добият точно необходимите стойности на параметрите на която и да е друга действаща система е метафорично казано „по-малка от безкрайно малка“ (1/∞k). 

При по-предните разсъждения вече стана дума, че всяка метаморфоза в параметрите на микросвета (характеристика на частиците, интензитет на взаимодействията и прочее) прави атомите нестабилни и води до тяхното разрушаване. С други думи, атомите на химичните елементи са дискретни структури, които не могат да преминават една в друга чрез поредица от междинни форми, а изискват строго разчетено конструиране. По подобен начин бихме могли да разсъждаваме и за небесните формирования – планетни, звездни, галактични и така нататък.

Както е добре известно, при живите същества белтъците играят много важна роля – изграждат клетъчните структури, изпълняват каталитични функции, участват в реализирането на генома и други. Но една част от тях са тясно видово специфични, затова ако се появи мутация, която да доведе до образуването на различен белтък, неговото действие няма да бъде в унисон с работата на останалите белтъци. По такъв начин, генетичните мутации пречат на синхронизацията на системите в организма и затова на практика се явяват вредни за индивида, тоест не му помагат в борбата за съществуване. С други думи, принципът „всичко или нищо” не способства и за постепенната еволюция на организмите, а няма никакви сведения и за „квантова” (тоест внезапна) поява на нови видове.

От направените разсъждения можем да заключим следното: Междинните състояния са: а) неустойчиви – при атомните и небесните структури и б) нефункциониращи – при живите организми. Това означава, че концепцията за универсална дарвинова еволюция на системите в мъртвата и живата природа е съвършено неприемлива.

Като се върнем на фигура 3, нека да си припомним парадокса, свързан с онази проста сметка:

от която се разбира, че Бог може да сътвори неограничено разнообразие от подредени и устойчиви светове, като вероятността за случайното възникване на който и да било от тях е „по-малка от безкрайно малка“, което изключва случайното му възникване.

Така се отговаря и на въпроса, поставен още от Айнщайн „имал ли е Бог избор при създаването на Вселената?”, който отново задават Хокинг и Млодинов в книгата си „Великият дизайн”.

Прочетете още „Опит за представяне на научен аргумент за съществуването на Бога – продължение 2*“

Опит за представяне на научен аргумент за съществуването на Бога[1]*

Валентин Велчев

Ричард Докинс изказва следната мисъл: „Една вселена със свръхестествено мъдър Творец със сигурност е по-различна от онази, която няма такъв. Всъщност едва ли може да има и по-фундаментално различие между тях, колкото и трудна да е практическата му проверка. Но този „дребен“ факт срива из основи и цялата изкусително „дипломатична“ теза, че науката би трябвало да пази пълно мълчание по централния въпрос на религията – този за Бога. Присъствието или отсъствието на подобен творчески свръхразум безспорно е научен проблем, независимо че поне за момента не намира практическо решение[2]“.

Чарлс Дарвин смята, че факторите на биологичната еволюция се свеждат до изменчивост, наследственост и естествен отбор. Ако обаче разглеждаме нещата строго натуралистично, бихме могли да отнесем неговото учение и към развитието на неживата природа. Руският космолог Андрей Линде (понастоящем работи към Станфордския университет) лансира идеята за така наречената „хаотична инфлация“. Според нея квантовите флуктуации на вакуума перманентно водят до пораждането на минивселени. Те се развиват изолирано, като първоначално се раздуват от инфлационни процеси, а по-нататък – съгласно класическата хипотеза за Големия взрив (фигура 1).

Фигура 1. Моделът на Линде се изобразява като дървовидна структура, състояща се от безкраен брой разклоняващи се „мехурчета“ (инфлационни вселени). Всяка новополучена вселена може да се „пъпкува“, образувайки нови дъщерни мини-вселени. (Промяната в цвета представя „мутации“ във физичните закони спрямо родителските вселени[3])

Казано накратко, според теорията за Мултивселена, при всяка поява на нов свят се наблюдава изменчивост в законите и константите на материята. Случайните повторения на някои от тях се разглеждат като един вид наследственост. Действа и естествен отбор, който запазва физичните структури – атоми, молекули, небесни системи, – когато, при съчетанието на необходимите параметри, те са устойчиви. Така оцеляват най-приспособените, които могат да дадат потомство, тоест да заченат нови бебета-вселени. По-нататък, на планети с подходящи условия, вече (химичната и) биологичната еволюция закономерно поражда живи, а някъде – и съзнателни същества.

Полският теоретичен физик Войчех Зурек разработва така наречената теория на „квантовия дарвинизъм“, за да отчете появата на обективната класическа реалност. Една от най-забележителните идеи тук е, че детерминираните свойства на обектите, които свързваме с класическата физика – координати, импулс и прочее – са избрани от менюто на квантовите възможности в процес, който е аналогичен на естествения отбор в еволюцията.

В посочената теоретична рамка свойствата, които се запазват са най-устойчивите (един вид най-приспособените). И както при естествения отбор, тук също в процеса на селекция оцеляват именно тези, които правят най-много копия на себе си. Това означава, че състоянията, които най-добре създават реплики в околната среда, са единствените, достъпни за измерване. Взаимодействието със средата ги декохерира в локализирано положение (тоест изчезва суперпозицията), така че да се наблюдава само едно единствено състояние. По такъв начин множество независими наблюдатели могат да правят измервания на квантовата система и да се споразумеят за резултата – а това е класическо поведение[4].

По отношение на абиогенезата немският физикохимик Манфред Айген предлага възможен биохимичен път за получаване на протоклетка, която не само е отворена система (тоест през нея протича поток от енергия, както и обмяна на вещества с околната среда), но съдържа и информативна молекула РНК, осигуряваща ѝ възможност за самовъзпроизводство. По-нататък М.Айген и П.Шустер дефинират синтеза като процес от хиперцикли, всеки един от които може да се опише със система нелинейни диференциални уравнения. Те смятат, че по аналогия с Дарвиновата еволюция при хиперциклите има химически отбор, водещ до конкурентна борба помежду им за мономерни молекули, тоест за „храна“[5]. (Разбира се, в неживия свят дарвинистката концепция се различава от нейната интерпретация в биологията).

Но щом като е възможно дарвинизмът да се приложи към мъртвата и живата природа, в такъв случай трябва да го приемем за универсална натуралистична парадигма, която обуславя самоорганизацията на мирозданието.

1. Каква е демаркационната линия между съзнателната и спонтанната подредба на мирозданието?

За интелекта не представлява никаква трудност да реализира процеси с безкрайно малка вероятност за осъществяване. Автомобилът е произведение на нашия разум. Възможно ли е той да се сглоби в резултат на природните стихии? Ще разгледаме само една от частите на двигателя. Да речем, имаме готов цилиндър. Каква е вероятността буталото към него да възникне случайно с подходящите форма и размери? Елементарните разсъждения показват, че тя е 1/∞, защото формите са безброй, както и размерите. (Нещата стават още по-невъзможни за реализация ако и самият цилиндър трябва да се появи по същия начин, така че тези два елемента да бъдат съчленени и системата да работи!) Конструкторът обаче без особени усилия, от безкрайно многото възможности, може веднага да определи подходящите параметри на елементите и като извърши някои изчисления да сглоби горните изделия (Ние много рядко си даваме сметка за необикновените способности на нашия ум!). След малко ще установим, че за появата на всемира се получават вероятности от порядъка на1/∞n, като построението на заобикалящата ни действителност обаче се оказва задача със значително по-голяма степен на сложност. Тоест за един съзнателен Бог е сто процента възможно да сътвори света, докато пред слепия случай (“часовникар” – по думите на Ричард Докинс[6]) изобщо не се открива никаква перспектива да се справи с подобно задание.

Намесата на интелекта се отразява и на естественото състояние на обектите и системите. Например, една футболна топка няма как сама да промени своето състояние на покой или посоката си на движение. Но играчите могат да променят нейния импулс, като със своята сила ѝ придават някаква скорост, насочвайки я според желанието си. Също така не съществува никаква пречка разумният и всемогъщ Творец след като създаде небесните тела да ги „тласне по техните орбити“ (според израза на Нютон). Нека да си припомним парадокса, който съществува в нашата Слънчева система: Масата на всички планети е едва 1/750 от масата на Слънцето, но при разпределението на общия момент на количеството движение (момента на импулса) над 98% от него се пада на планетите, а по-малко от 2% – на Слънцето. Но дали по естествен път е възможно да се стигне до толкова драстично нарушение на момента на импулса, или е необходима допълнителна разумна намеса?[7] Затова, ако се докаже, че структурите на нашия свят не са формирани в резултат от действието на природните закони, това също ще потвърждава намесата на интелигентен Създател.

С други думи, научният аргумент за съществуването на Бога, който ще представим ще бъде обусловен от доказателството за статистическа и физическа невъзможност за самоорганизация на материята, от което по необходимост ще следва наличието на „свръхестествено мъдър Творец“!

2. Предизвикателството

През 2010 година излезе книгата „Великият дизайн” на прочутия британски космолог и популяризатор на науката Стивън Хокинг, написана в съавторство с американския физик Ленард Млодинов. Тази книга успя да скандализира религиозните лидери[8] още преди отпечатването си с намеците на авторите, че в нея те са успели да опровергаят сър Исак Нютон, който е твърдял, че Вселената няма как да е възникнала от хаоса, а е дело на всемогъщата Божия десница[9].

Според Питър Галисън „Всеки автор би завидял на Хокинг и Млодинов за вниманието, оказано на книгата им „Великият дизайн” от страна на архиепископа на Кентърбъри, на главния равин и на председателя на Съвета на мюсюлманите във Великобритания. И тримата търсят теоретични „оръжия”, които да им помогнат да окажат отпор на мнението на двамата физици, които в своя общ труд разколебават вярващите относно съществуването на Бог”[10].

Редица други изследователи също се присъединяват към посоченото становище, като смятат, че науката е най-силната противоотрова срещу ретроградното философско и религиозно мислене. Известният физик Лорънс Краус дори ни съветва: „Забравете за Иисус – звездите са умрели, за да се родите вие[11]”.

Ние ще приемем „хвърлената ръкавица” и ще се постараем да отговорим на предизвикателството, отправено към християнството от натуралистите измежду съвременните учени.

Прочетете още „Опит за представяне на научен аргумент за съществуването на Бога[1]*“